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Abstract
Traditional task-evoked brain activations are based on detection and estimation of signal

change from the mean signal. By contrast, the low-frequency steady-state brain response

(lfSSBR) reflects frequency-tagging activity at the fundamental frequency of the task presenta-

tion and its harmonics. Compared to the activity at these resonant frequencies, brain

responses at nonresonant frequencies are largely unknown. Additionally, because the lfSSBR is

defined by power change, we hypothesize using Parseval’s theorem that the power change

reflects brain signal variability rather than the change of mean signal. Using a face recognition

task, we observed power increase at the fundamental frequency (0.05 Hz) and two harmonics

(0.1 and 0.15 Hz) and power decrease within the infra-slow frequency band (<0.1 Hz), sug-

gesting a multifrequency energy reallocation. The consistency of power and variability was

demonstrated by the high correlation (r> .955) of their spatial distribution and brain–behavior

relationship at all frequency bands. Additionally, the reallocation of finite energy was observed

across various brain regions and frequency bands, forming a particular spatiotemporal pattern.

Overall, results from this study strongly suggest that frequency-specific power and variability

may measure the same underlying brain activity and that these results may shed light on dif-

ferent mechanisms between lfSSBR and brain activation, and spatiotemporal characteristics of

energy reallocation induced by cognitive tasks.
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1 | INTRODUCTION

Low-frequency steady-state brain response (lfSSBR) refers to enhanced

power of brain signal at the fundamental frequency of cognitive task

and its harmonics (Herrmann, 2001; Wang et al., 2014). This is different

from traditional brain analysis, where activation measured by the

general linear model (GLM). In lfSSBR, we assess the amplitude of regu-

lar fluctuations in a relative long time series rather than transient signal

change (Figure 1), indicating that it cannot be delineated using tradi-

tional hemodynamic response function (Lewis, Setsompop, Rosen, &

Polimeni, 2016; Wang et al., 2014). Additionally, the lfSSBR represents

brain network in frequency- and phase-dependent means (Wang, Liu,
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Jing, Long, & Chen, 2016a; Wang et al., 2016b), and is associated with

particular psychophysiological activity (Wang et al., 2014, 2015).

Recent studies have suggested that task-evoked blood oxygen level

dependent (BOLD) signals and ongoing BOLD signal fluctuations have

negative and phase-dependent interaction, challenging the linear super-

position model (He, 2013; Huang et al., 2017). It has also been sug-

gested that stochastic fluctuations are physiologically meaningful

rather than pure noise, and therefore, should not be simply eliminated

by averaging across trials (Garrett, Kovacevic, McIntosh, & Grady,

2010; McDonnell & Ward, 2011). These findings indicate that lfSSBR

can serve as an alternative index of brain activity, though its exact neu-

ral mechanism is not completely understood.

The power of signal in the frequency domain is equivalent to the

variability in the time domain and vice versa based on the Parseval’s

theorem. Accordingly, we hypothesize that the lfSSBR may reflect

brain signal variability (BSV) at particular frequencies. Previous studies

have shown enhanced power, functional connectivity, and coherence

at resonant frequencies (the fundamental frequency and its harmon-

ics) and a reduction in power at lower frequency range (Fransson,

2006; He, 2011; Wang et al., 2014, 2015), suggesting frequency-

specific characteristics of lfSSBR. The BSV, on the other hand, is usu-

ally measured at broad frequency range (Garrett et al., 2013b;

Guitart-Masip et al., 2016), leaving its frequency characteristics largely

unknown. Therefore, systematically investigating the frequency char-

acteristics of power and variability would help understand the lfSSBR

mechanism.

The primary aim of the article is to explore the mechanism of

lfSSBR by comparing it with BSV at multiple frequency bands through

two steps: (a) inspecting the spatial distribution of task effect on power

and variability and (b) investigating behavioral correlation of power and

variability. Results from this study suggest high consistency between

these two indices and significant frequency specificity for both of

them. These evidence demonstrate that the lfSSBR in the frequency

domain reflects BSV in the time domain, improving our understanding

of the time–frequency mechanism of lfSSBR.

2 | METHODS

2.1 | Subjects and procedure

Thirty participants (mean age6 standard deviation (SD)522.4162.11

years, range from 18 to 27 years; 15 males/15 females) were recruited

for this study. All the subjects had normal or correct-to-normal vision,

were right-handed, reported free from any medication, neurological,

and psychiatric disorders. Written informed consent, approved by the

research ethical committee of School of Life Science and Technology

at University of Electronic Science and Technology of China, was

obtained from each subject before the beginning of the experiment.

The experiment was carried out in accordance with The Code of Ethics

of the World Medical Association (Declaration of Helsinki).

A task lasting for 10 min 20 s and an equal-length resting scan

were counterbalanced between subjects. During the task presenta-

tions, participants were asked to perform a face recognition task by

judging whether the face has a neutral expression (right thumb

response) or happy expression (left thumb response) as accurately and

fast as possible. Although there were only neutral faces in the para-

digm, subjects were told that happy expression appeared no more than

once to ensure that they paid attention during the entire task. The

stimuli were selected from the Chinese Facial Affective Picture System

(CFAPS). The values of valence, arousal, dominance, and attraction

were 4.4060.60 (mean6 SD), 3.6560.54, 4.9860.35, and 4.196

0.45, respectively. In each trial, the face was presented on the black

background for 2 s and followed by a white fixation crosshair of 18 s.

Each trial lasted for 20 s, forming a fundamental frequency of 0.05 Hz.

The procedure was performed with E-Prime 2.0 software (http://www.

pstnet.com; Psychology Software Tools). During the resting scan, par-

ticipants were required to remain motionless, focus their eyes on a

white crosshair against black background, stay awake, and not think of

anything in particular.

2.2 | Imaging data acquisition

MRI data were acquired using a 3.0 T GE 750 scanner (General Electric,

Fairfield, Connecticut, USA) equipped with high-speed gradients. An 8-

channel prototype quadrature birdcage head coil fitted with foam pad-

ding was applied to minimize the head motion. Functional images were

acquired using a gradient-recalled echo-planar imaging (EPI) sequence.

The imaging parameters were as follows: repetition time/echo time-

52,000 ms/30 ms, 908 flip angle, bandwidth5250 Hz/pixel, 43 axial

slices (3.2 mm slice thickness without gap), 64 3 64 matrix, 22 cm field

of view, and 310 volumes.

2.3 | Imaging data preprocessing

Functional images were preprocessed using the Data Processing Assist-

ant for Resting-state fMRI (DPARSF 2.3, http://www.restfmri.net/

forum/DPARSF). The preprocessing flow was determined by previous

variability and lfSSBR studies and is therefore briefly described here

(Garrett, Kovacevic, McIntosh, & Grady, 2013a; Garrett, McIntosh, &

Grady, 2014; Wang et al., 2014, 2015). The first 10 volumes were

FIGURE 1 The schematic plot of activation and lfSSBR. Brain
activation measures the transient enhancement of brain signal,
whereas the lfSSBR surveys the amplitude of signal fluctuations in
a relative long term
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discarded to ensure signal equilibrium and for the participants to famil-

iarize themselves with the scanning environment (Wang et al., 2014).

The remaining 300 images were slice-time corrected, spatially aligned,

spatially normalized to Montreal Neurological Institute (MNI) EPI tem-

plate, and resampled to 3 3 3 3 3 voxels. The images were then spa-

tially smoothed with 8-mm FWHM Gaussian kernel. Friston’s 24 head

motion parameters, white matter signal and cerebrospinal fluid signal

were further regressed out using DPARSF. The data of one participant

were removed from the final analysis due to large head motion (transla-

tion >3 mm or rotation >38) in any scan.

2.4 | Behavioral data analysis

The accuracy and reaction time (RT) of behavioral performance were

calculated for each subject.

2.5 | Whole-brain power analysis

Whole-brain power analysis was first performed to determine

whether lfSSBR was evoked by the task and to define the boundary

of each frequency band. This analysis has been depicted elsewhere in

detail (Wang et al., 2014), and therefore, only briefly described here.

We first defined the gray matter region within the Automated Ana-

tomical Labeling (AAL) 90 template. The time series of each voxel in

the gray matter was converted to the frequency domain without

band-pass filtering using the fast Fourier transform (FFT). The fre-

quency resolution is 0.0017 Hz (sampling rate/data length: 0.5 Hz/

300). The power spectrum of task state or resting state for each sub-

ject was defined as the average of power spectrum in all voxels. The

frequency-specific mean power was calculated at all resonant

(0.0475–0.0525 Hz (the fundamental frequency), 0.0975–0.1025 Hz

(the first harmonic), 0.1475–0.1525 Hz (the second harmonic),

0.1975–0.2025 Hz (the third harmonic)), and nonresonant (0.01–

0.0475 Hz, 0.0525–0.0975 Hz, 0.1025–0.1475 Hz, 0.1525–0.1975

Hz, 0.2025–0.25 Hz) frequency bands. Paired-samples t test was

used to assess in which frequency band the power was modulated

by task. Multiple comparisons were corrected by Bonferroni approach

with p< .05 (Wang et al., 2013).

2.6 | Regional power analysis

Preprocessed data were band-pass filtered into aforementioned nine

frequency bands using the DPARSF software. The power was calcu-

lated in each voxel of the gray matter mask within these frequency

bands. The obtained power values were transformed to standard z

values to reduce the global effects of variance across participants

(Yan & Zang, 2010) and enable the comparison between two indices

(Liang, Zou, He, & Yang, 2013). For each subject, the z value of

each voxel was obtained by subtracting the mean and dividing by

the standard deviation of all voxels. Paired-samples t test was per-

formed in each frequency band to evaluate the task effect. All

resulting maps were corrected using false discovery rate (FDR)

method (p< .05) for multiple comparisons (Worsley et al., 1996). Sta-

tistical analyses were conducted with SPM8 (www.fil.ion.ucl.ac.uk/

spm). Considering the rigidity of correction for multiple comparisons,

we also computed the group level z maps of power as well as the

ratio of z value of task/rest at each frequency band to show the

spatial pattern of power.

It should be noticed that percent-signal change or z-statistics of

time series are often used in BSV studies because the MSSD is sensi-

tive to field-strength; however, the normalization of time series is not

often used in lfSSBR or power studies (Guitart-Masip et al., 2016;

Nomi, Bolt, Ezie, Uddin, & Heller, 2017; Samanez-Larkin, Kuhnen, Yoo,

& Knutson, 2010; Wang et al., 2016b; Yang et al., 2007). In addition,

Nomi et al. (2017) compared the MSSD with normalized time series

and SD with non-normalized time series, observing a correlation of

0.73 between two indices. By contrast, Garrett, Kovacevic, McIntosh,

and Grady (2011) reported strongly correlated (r> .97) MSSD and SD

using normalized time series. It seems that the normalization of time

series may induce dramatic change of BSV. Here, we calculated the

power at the fundamental frequency from time series before and after

z transformation. The power map with normalized time series is largely

different from the power map with raw time series (Figure 2). Of note,

some important brain regions for face recognition such as the occipital

face area and fusiform face area are drowned in other regions when

using normalized time series. In fact, cognitive tasks can evoke high

power or amplitude in particular regions (Rossion, Prieto, Boremanse,

Kuefner, & Van Belle, 2012; Wang et al., 2014). The inter-regional dif-

ference in response strength is of importance for the location of task

effect. Although normalized data could reflect different response

strengths of one region to distinctive tasks or brain states, it could also

change the relative response strengths of different brain regions. To

better describe task-related functional organization of the brain, we

decided to use non-normalized time series in both power and BSV

analyses.

2.7 | Moment-to-moment signal variability

The mean squared successive difference (MSSD) was adopted to repre-

sent temporal variability of both task and resting states. MSSD is con-

sidered as an appropriate metric of temporal variability in experiments

with different cognitive situations (Mohr & Nagel, 2010; Samanez-

Larkin et al., 2010). For each voxel in the gray matter, the MSSD was

computed by subtracting a time point from the next time point, squar-

ing the difference, then averaging all values over the whole time series.

The calculation was accomplished with a custom-built function in

MATLAB (The MathWorks, Inc.) within the same nine frequency bands

as regional power analysis based on band-pass filtered data. The vari-

ability effect was tested using the same statistical approach as the

regional power (see the previous paragraph).

2.8 | Cross-frequency coupling

We adopted the cross-voxel correlation (CVC) (Liang et al., 2013) to

evaluate the similarity of spatial distribution between power and vari-

ability. As suggested by Liang et al., the 3D z maps of lfSSBR and vari-

ability within the gray matter were first transformed into columns,
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respectively. The gray matter mask was used to ensure cross-

frequency comparison in the same region and to test whether power

and variability reflect the same response pattern in both task and

nontask regions because various patterns of response could be

detected in the whole brain with high signal-to-noise ratio (SNR)

(Gonzalez-Castillo et al., 2012). The Pearson’s correlation was com-

puted between two columns of data. To estimate the p values, the

effective degree of freedom (dfeff) in the CVC analysis was corrected,

considering the dependence between voxels influenced by spatial

smoothing (Liang et al., 2013). The intra- and interfrequency correla-

tions of power–power, variability–variability, and power–variability

were calculated for both task and resting states. The differences in

these correlations between task and resting states and between adja-

cent frequency bands were measured by paired-samples t test. The

results of t test were corrected for multiple comparisons using FDR

approach (p< .05).

2.9 | Brain–behavior relationship

Because the BSV measures the variance of time series rather than

mean BOLD signal (Garrett et al., 2010) and is thought to be associated

with behavioral stability (McIntosh, Kovacevic, & Itier, 2008), we

assessed the correlations between the power and variability of task

state and the mean and SD of RT at all frequency bands. Here, r values

over 60.7 were categorized as strong correlations, r values over 60.4

were interpreted as moderate correlations, and those over 60.1 were

weak correlations (Sokunbi, 2014). The CVC of correlation maps was

further performed to assess the similarity of intra- and interfrequency

spatial distribution of brain–behavior relationship.

3 | RESULTS

3.1 | Behavioral results

The accuracy of performance was extremely high with only two incor-

rect responses out of 870 trials in all 29 subjects. At the group level,

the RT was 624.676107.47 (mean6 SD) ms. It ranged from 344.32 to

875.43 ms at the individual level with the SD ranging from 50.88 to

184.80 ms.

3.2 | Frequency-specific power reallocation at the

whole-brain level

Compared to resting state, the power was increased at the fundamen-

tal frequency of task, the first and second harmonics while decreased

FIGURE 2 Power distributions obtained from data without (left) and with (right) z transformation at the fundamental frequency. The two
distribution patterns are different from each other with spatial correlation coefficient r50.4455. The face recognition regions (e.g., the
occipital face area and fusiform face area) cannot be differentiated from other regions using data after z transformation [Color figure can be
viewed at wileyonlinelibrary.com]

TABLE 1 Task-induced power increase or decrease at multiple fre-
quency bands

Frequency band t(28) pa Cohen’s d

Fundamental 6.427 <.0001 1.404

First harmonic 4.386 .0001 1.170

Second harmonic 5.367 <.0001 1.283

0.01–0.0475 Hz 23.890 .0006 0.780

aPaired-samples t test with Bonferroni correction, p< .05.

FIGURE 3 Whole brain power spectrums in task and resting
states. Compared with resting state, the face recognition task
enhanced the power at the fundamental frequency of task and two
harmonics, showing evident lfSSBR. Besides that, the task reduced
the power in the lower frequency band. Solid lines show the mean
values of power for all subjects. Shaded areas are defined by
standard error
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at the 0.01–0.0475 Hz frequency band (Table 1 and Figure 3), showing

frequency-specific power reallocation.

3.3 | Frequency-specific spatial distribution of power

and variability

In line with previous findings (Baria, Baliki, Parrish, & Apkarian, 2011;

Zuo et al., 2010), the power transferred from the cortical regions to

subcortical structures as frequency increases (Figure 4a,b). The variabil-

ity showed the same trend as power. The task effects for both power

and variability appeared at the fundamental frequency and its harmon-

ics as well as two infra-slow frequency bands (0.01–0.0475 Hz, and

0.0525–0.0975 Hz). However, regions with task effect for power were

similar to those for variability only at the fundamental frequency

(Figure 4c). At the fundamental frequency, task evoked higher power

and variability in the core regions of face recognition (occipital face

area (OFA), fusiform face area (FFA), posterior superior temporal sulcus

(pSTS)) (Haxby, Hoffman, & Gobbini, 2000), attention regions (anterior

insula, inferior frontal junction) (Baldauf & Desimone, 2014), and motor

region (supplementary motor area (SMA)) (Bonini et al., 2014) and

decreased power and variability in the default mode network (posterior

cingulate cortex (PCC)/precuneus, angular gyrus, medial, and lateral

frontal cortex) (Raichle, 2015). The pattern of increased and decreased

power/variability is similar to task-relevant brain activation and deacti-

vation. Significantly increased power was found at 0.01–0.0475 and

0.0525–0.0975 Hz, whereas significantly decreased variability was

FIGURE 4 The spatial distribution of power and variability and their task effects within nine frequency bands. The group level spatial
distribution of power and variability is obtained by averaging the z map of each subject (a,b). The task effect is revealed by paired-samples t

test (c). To eliminate the restriction of stringent multiple comparison correction, the ratio of z value of task/rest is shown by averaging the
ratio of each subject (d). Only the right hemisphere is shown [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 5 The intra- and interfrequency coupling for power and variability in task and resting states and their differences between these
two states. The cross-voxel correlation is used to measure the spatial coupling in task (a) and resting (b) states. The difference between task
and resting states is assessed by paired-samples t test and shown with white color (c). Intrafrequency coupling between task and resting
states shows that spatial couplings are reduced at resonant frequencies compared with nonresonant frequencies (d). The task effect is also
measured between adjacent frequency bands (d). Symbols f1–f9 correspond to nine frequency bands from 0.01–0.0475 Hz to 0.2025–0.25
Hz. Color bar indexes the r value in panel a and b. ** represents p< .01, while *** represents p< .001 in panel d
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observed in these frequency bands. Only enhanced variability was

observed at three harmonics, whereas reduced power was found at the

first harmonic in the auditory and somatosensory regions (Figure 4c).

However, these discrepant effects between power and variability might

be due to different statistical validities because the task induced spatial

patterns were much similar between power and variability.

3.4 | Consistent spatial distribution of power and

variability

Besides the ratio map of task/rest, the CVC analysis further demon-

strated that the spatial distributions of variability and power were

highly consistent (r> .993) at the same frequency band for both task

and resting states, indicating that power and variability reflect the same

response pattern not only in task regions but also in nontask regions.

The highly similar spatial pattern during rest and task states made the

two distributions highly consistent in intra- and interfrequency coupling

(Figure 5a,b). The task effect on spatial distribution showed frequency-

specific characteristics between resonant and nonresonant frequency

bands (Figure 5c) which might be caused by task-rest decoupling at res-

onant frequencies (Figure 5d).

3.5 | Brain–behavior relationship

After demonstrating reliable spatial distributions of power and variabili-

ty, we further investigated whether the two indices have a consistent

brain–behavior relationship. Strongly positive correlation was observed

between power/variability and the mean of RT in the frontal pole,

whereas strongly negative correlations were found in the face recogni-

tion regions (the primary visual cortex, FFA, and pSTS), the attention

FIGURE 6 The brain–behavior correlation. Panel a shows the correlation coefficient maps between power/variability and the mean of RT.
Panel b shows the correlation coefficient maps between power/variability and the SD of RT. Color bar shows the range of correlation
coefficient [Color figure can be viewed at wileyonlinelibrary.com]
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related areas (the anterior insula and precuneus), and sensorimotor

regions (the SMA, middle cingulate cortex, and somatosensory cortex).

A similar brain–behavior relationship was found between the SD of RT

and power/variability (Figure 6). Of note, the brain–behavior relation-

ship dispersed at both resonant and nonresonant frequency bands,

indicating the multifrequency physiological meanings of power/

variability.

3.6 | Consistent spatial distribution of brain–behavior
relationship for power and variability

The spatial distributions of brain–behavior correlation for power and

variability were highly consistent (CVC, r> .955) at the same frequency

band (Figure 7). The intra- and interfrequency power-variability cou-

pling mirrored the power–power and variability–variability couplings,

confirming the high consistency of the brain–behavior relationship

between power and variability.

4 | DISCUSSION

In this study, we explored the mechanism of lfSSBR, demonstrating the

equivalence of power and variability in the corresponding frequency

bands with powerful empirical evidence. Specifically, the lfSSBR, unlike

brain activation, is associated with the variance of brain signal. This

study further demonstrated reallocation of energy at multiple fre-

quency bands during face recognition.

4.1 | The consistency of power in the frequency

domain and variability in the time domain

Both spatial distribution and brain–behavior relationship show a high

consistency of power and variability, suggesting the equivalence of

power and variability in the corresponding frequency ranges. The

lfSSBR and brain activation are associated with the variance and mean

of brain signal (Lewis et al., 2016; also see Figure 1), demonstrating dif-

ferent mechanisms between them. Due to the high consistency

between power and variability, we can comprehend both of them from

perspectives of energy consumption, complex system, and frequency

specificity.

The BSV is suggested to be associated with the dynamic range of

brain function, or kinetic energy of the brain to achieve various poten-

tial states (Garrett et al., 2014), indicating that it reflects energy con-

sumption within a period of time. Therefore, the consistency of power

and variability guarantees the equivalence of energy consumption in

the particular frequency band and that in corresponding temporal scale.

Accordingly, the increased and decreased variability during cognitive

decline and aging may be related to energy reallocation or different

energy requirements among brain regions and across ages (Garrett

FIGURE 7 The intra- and interfrequency coupling of brain–behavior relationship. The cross-voxel correlation is used to measure the spatial
coupling of brain–behavior correlation between power/variability and the mean of RT (a) and the SD of RT (b). Symbols f1–f9 correspond
to nine frequency bands from 0.01–0.0475 Hz to 0.2025–0.25 Hz. Color bar indexes the r value
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et al., 2011). This may provide a novel perspective to delineate cogni-

tive and aging-related regional characteristics.

4.2 | Reallocation of energy distribution at multiple

frequency bands during face recognition

Significant lfSSBR is evoked at the fundamental frequency and two har-

monics along with power reduction at the 0.01–0.0475 Hz frequency

band. The harmonic phenomenon is in line with previous steady-state

evoked potential (SSEP) and lfSSBR studies (Chicherov & Herzog,

2015; Wang et al., 2014, 2016a), reflecting the dynamics of the non-

linear system (Herrmann, 2001; Lewis et al., 2016). The low-frequency

power reduction is also observed in simple reaction task (He, 2011;

Wang et al., 2014), working memory task (Fransson, 2006), and seman-

tic comprehension task (Wang et al., 2015). It is suggested that, during

cognitive processing, the brain reallocates energy from slow ongoing

fluctuations to rapid cognition to improve behavioral performance and

adaptation (He, Zempel, Snyder, & Raichle, 2010; Schroeder & Lakatos,

2012). However, the power reduction disappeared after the deconvo-

lution of hemodynamic response function (Wang et al., 2014, 2015),

indicating that neurovascular coupling may contribute to this phenom-

enon. The factors influencing neurovascular coupling, such as glucose

metabolism and neurotransmitter reuptake reflected by cerebral blood

flow and astrocyte activity, may contribute to the phenomenon of

energy reallocation (Andreone, Lacoste, & Gu, 2015; Rosenegger &

Gordon, 2015). This hypothesis deserves future investigations.

As the first study of frequency-specific BSV, we show that BSV

has almost the same spatial distribution as power and is not always

positively or negatively related to cognitive skill. In fact, the BSV is pri-

marily increased at resonant frequencies while decreased at nonreso-

nant frequencies, indicating frequency-specific energy reallocation. The

frequency effect challenges the monotonous relationship between BSV

and cognitive performance as previously suggested (Garrett et al.,

2013a,2014), arguing that the brain can flexibly reallocate energy

among different functional subsystems (Armbruster-Genç, Ueltzh€offer,

& Fiebach, 2016).

4.3 | Brain–behavior relationship

Both power and variability have been demonstrated to be closely related

to behavior performance (Garrett et al., 2014; Wang et al., 2015). In this

study, the power and variability show consistent brain–behavior relation-

ship. It could be found that cognitive-related energy reallocation occurs

not only at resonant frequencies but also at nonresonant frequencies,

indicating multifrequency or multitimescale energy reallocation. Addi-

tionally, the regions with strongest brain–behavior relationship did not

significantly overlap with regions with strongest task effect, further sup-

porting the nonmonotonic relationship between BSV and cognitive activ-

ity. Overall, these evidence extend the relatively clear BSV–behavior

relationship to a flexible and nonmonotonic relationship.

Furthermore, whether power/variability increases or decreases

may depend on parameters such as task, frequency, and brain region.

Single-task and multitask may enable the brain to stay at a few stable

states and transfer among multiple states, respectively, inducing dis-

tinctive power/variability changes. The task may induce complemen-

tary power/variability changes at task frequency and nontask

frequency. High power/variability in the sensory cortex may be associ-

ated with more available sensory information, improving task perform-

ance (Lafontaine et al., 2016); whereas that in the task-control or

decision-making regions may be related to multiple optional outputs,

improving multitask performance but damaging single-task perform-

ance (Cole et al., 2013). In this study, higher power/variability in the

visual system and attention system may be associated with more avail-

able input information and attention resources, respectively. These

ample external and internal resources may result in better cognitive

performance. By contrast, the frontal pole is involved in complex cogni-

tive functions and behavioral control (Ray et al., 2015). Higher power/

variability in this region may damage the output of single task. There-

fore, we argue that a complex relationship between power/variability

and behavioral performance may vary across space and time rather

than a monotonous relationship for all spatiotemporal scales.

4.4 | Implications for future studies

We demonstrate that lfSSBR is closely related to brain signal variability,

differentiating it from brain activation. The cognitive processes and

ongoing activities are demonstrated to be negatively interactive and

phase-dependent rather than linear addition (He, 2013; Huang et al.,

2017), making the GLM-based brain activation inadequate to describe

cognitive-related brain activity. By contrast, the lfSSBR could regulate

phase synchronization at multiple frequency bands (Lewis et al., 2016;

Wang et al., 2016a,b). The phase synchronization is essential to informa-

tion transfer between brain regions (phase gating hypothesis) and to

modulate high-frequency neural oscillations (phase-amplitude coupling

hypothesis) (Canolty & Knight, 2010; Florin & Baillet, 2015; Maris, Fries,

& van Ede, 2016). Furthermore, we suggest that lfSSBR is more powerful

in predicting aging and behavioral performance than mean BOLD signal

(Garrett et al., 2013a; Grady & Garrett, 2014; Guitart-Masip et al., 2016;

McIntosh et al., 2008) due to the close relationship between power and

variability. Overall, the lfSSBR may be a relative simple surrogate for non-

linear brain activity (e.g., harmonic phenomenon) with high SNR (>300%

for lfSSBR as shown in Figure 2 vs 5% for mean BOLD signal change).

The consistent spatial distribution and brain–behavior relationship

between power and variability is critical for us to understand the under-

lying mechanism of lfSSBR and the energy reallocation during face rec-

ognition. The high consistency of power/variability enables us to

comprehend one from the other. For instance, we can explain lfSSBR

from the opinion of complex system and describe variability from the

perspective of frequency specificity. It is suggested that the brain, as a

nonlinear dynamic system, acts at the “edge of criticality” among a vari-

ety of latent states or network configurations (Deco & Jirsa, 2012).

Enhanced variability reflects greater network complexity, increased

dynamic range, and the capacity for the system to explore different

states (Garrett et al., 2011, 2013a). The energy reallocation associated

with lfSSBR, therefore, is related to network reorganization and state

transfer among frequency bands, in keeping with the multilayer network
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hypothesis (Brookes et al., 2016; Wang et al., 2018). The reorganization

of functional systems induced by face recognition across frequency

bands and across brain regions is also in line with the idea of reorganiza-

tion of functional networks and functional fingerprints during cognition

(Ponce-Alvarez, He, Hagmann, & Deco, 2015; Siegel, Donner, & Engel,

2012). This may shed new insight into understanding how our brain

mobilizes limited energy to optimize cognition (Raichle, 2006).

The current results could enlighten other neural oscillation

researches such as SSEP and amplitude of low-frequency fluctuation

(ALFF). We argue that the lfSSBR cannot be the mean response of mul-

tiple trials because the latter is associated with the mean rather than

variance of brain signal. Likely, the SSEP may reflect the neural entrain-

ment of task activities rather than the superposition of many event-

related potentials (Zhang, Peng, Zhang, & Hu, 2013). On the other

hand, we recommend researchers to explain the ALFF from the per-

spective of energy consumption and BSV, because the ALFF is the

square root of power (Yang et al., 2007). Considering the extensive use

of ALFF in cognitive and clinical neurosciences, we can understand the

cognitive and pathologic mechanism of brain activities from the per-

spective of metastability, dynamic space, and kinetic energy revealed

by BSV (Deco & Kringelbach, 2016; Garrett et al., 2014). In turn, the

BSV may reflect the same neural and metabolic mechanisms as ALFF.

Furthermore, besides the fundamental frequency, the task effect on

power and variability is located in different regions although the spatial

distribution of these two indices is consistent. Considering that the brain

signal is impossible to be precisely stable across trials (e.g., trial-to-trial

variability), the moment-to-moment BSV may capture more details than

the power of whole time series, making the task effects somewhat dif-

ferent between them. Alternatively, head motion and physiological con-

taminants may influence the spatial distributions of power and

variability. However, we believe that these noises would exert compara-

ble influences on power and variability as the close relationship between

power and variability was revealed from both theoretical and empirical

perspectives and the same noise processing method was used in the pre-

processing section. The MSSD may be exquisitely sensitive to rapid head

motion and physiological contaminants which are difficult to remove

here. Rapid scanning techniques should be used in future studies to clar-

ify the effect of these noises on power and variability.

Last, previous studies (Garrett et al., 2013b) and the current results

suggest that power and variability are powerful indices in revealing

brain responses to cognition, aging, and brain diseases at different tem-

poral and spatial scales. However, more elaborate task design and noise

control should be performed in future studies to make power and vari-

ability more powerful in predicting brain responses under various cir-

cumstances. Many indices such as power/variability, scale-free, and

functional connectivity should be also combined to systematically

uncover brain activities at multiple temporal and spatial scales.

5 | L IMITATIONS

Although the frequency-specific consistency of power and variability

provides a promising insight regarding the multiscale neural oscillations,

some limitations remain. First, due to the high accuracy of face recogni-

tion, we could not decipher the change of power–variability relation-

ship and brain–behavior relationship associated with cognitive failure.

As a consequence, the differences in these relationships between cor-

rect and incorrect trials could not be determined. Second, how does

energy reallocation occur between different brain regions and fre-

quency bands could not be determined here. Energy transfer between

brain regions and frequency bands deserves future studies. Third, the

high SNR of lfSSBR depends on regular task presentation in a relatively

long time series (Norcia, Appelbaum, Ales, Cottereau, & Rossion, 2015),

making it hard to be applied to event-related experimental design.

Some other approaches with high SNR should be explored to capture

brain activities in flexible task designs. Fourth, MSSD is sensitive to

field strength differences in the BOLD signal across the brain. For

instance, time series A: 1, 3, 5, 3, 1 has an MSSD of 1 while time series

B: 1, 5, 9, 5, 1 has an MSSD of 4. However, they both have an MSSD

value of �1.43 if converting the time series to z-statistics before com-

puting MSSD. The influences of normalization of time series on BSV

and power have been demonstrated in previous studies (Garrett et al.,

2011; Nomi et al., 2017) and in this study (Figure 2). Whether the nor-

malization of time series would reflect different neural mechanisms

compared with dataset without normalization requires a thorough

examination by using both simulation and experimental data.

6 | CONCLUSIONS

In summary, we demonstrate that the power of brain signal is equiva-

lent to the variability in the corresponding frequency band, arguing that

the lfSSBR reflects the variance rather than the mean of brain signal.

Therefore, this manuscript suggests that the lfSSBR reflects the

entrainment mechanism rather than the mean response of multiple tri-

als. Further, both power and variability analyses reveal complex energy

reallocation pattern and brain–behavior relationship during face recog-

nition, enlightening the multiscale adaptive energy reallocation of our

brain during cognition.
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